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Abstract—The b-substituted captodative olefins methyl 2-aryloxy-3-dimethylaminopropenoates 4a–h were synthesized, via amino-
methylenation of the corresponding 2-phenoxyacetic esters 9a–h. Lewis acid promoted intramolecular cyclization of alkenes 4 led to
benzofurans 7a–h, in an efficient synthetic approach to the benzofuran frame.
� 2004 Elsevier Ltd. All rights reserved.
Benzofurans have attracted widespread interest in view
of their biological activity,1 their presence in a large
number of natural products,2 and their potential as
pharmacological agents.3 Consequently, diverse syn-
thetic strategies have been developed to build their fused
skeleton, commonly starting from a benzene ring with
the appropriate substituents. A large number of
syntheses of the heterocyclic moiety are based on the
formation of the O–C2

4 or the C2–C3 bonds,
5 as the ring

closure step.1 However, those strategies involving C3–
C3a bond formation, by intramolecular cyclization of a
properly functionalized precursor, have been particu-
larly used as an attractive and versatile approach.1;6

Recently we reported the preparation of the new
captodative olefins 1 and 2, which bear the acrylic acid
frame.7 These alkenes were designed to mimic the
structural features of the very reactive and selective
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captodative olefins 3.8 Thus, both kinds of compounds
hold the same electron-donating group but a different
electron-withdrawing group. It was found that deriva-
tives 1 and 2 were less reactive and selective than alkenes
3 as dienophiles in Diels–Alder reactions. FMO calcu-
lations suggested that the electron-withdrawing group
controls the reactivity, and that the higher reactivity of 3
is determined by its less energetic LUMO.9

With the aim of evaluating the effect of the electron-
donating group on the reactivity of the double bond, we
carried out the synthesis of alkenes 4. The acrylic ske-
leton in this case is analogous to that found in 1 and 2,
but with an aryloxy group attached to the double bond
as the electron-releasing group. The dimethylamino
group in the beta position is expected to decrease the
reactivity of these dienophiles in Diels–Alder reactions,
in agreement with the behavior of alkenes 5,10 which are
enaminones with a high synthetic potential.11 However,
the dimethylamino group promotes conjugate addition
of nucleophiles such as thiolates to alkenes 5, leading to
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Table 1. Preparation of the methyl 2-aryloxy-3-dimethylaminoprop-

enoates 4a–ha

Entry 9 (R) 4 Mp (�C) Yield (%)b

1 9a (3-Me) 4a 53–54 64

2 9b (3-OMe) 4b Oil 61

3 9c (2,5-(Me)2) 4c 93–94 65

4 9d (3,4-(OMe)2) 4d 81–82 68

5 9e (3-OMe,4-OEt) 4e 80–82 74

6 9f (3-OMe,4-OBn) 4f 73–74 63

7 9g (3,4-OCH2O) 4g 99–100 60

8 9h (2,3,4-(OMe)3) 4h 72–73 76

aUnder N2 atmosphere, with 3.0mol equiv of DMFDMA at 90 �C for

24 h.
bAfter column chromatography and recrystallization.
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products 6,12 in which substitution of this group took
place.

Since olefins 3 undergo fast Friedel–Crafts addition of
activated benzene rings under Lewis acid catalysis,13

alkenes 4 might be suitable substrates to provide benzo-
furans by intramolecular addition (Scheme 1). Hence,
we hereby describe the synthesis of the series of alkenes
4a–g, and their use in the preparation of substituted
2-methoxycarbonylbenzofurans 7.

As illustrated in Scheme 2, the phenoxyacetic com-
pounds 9a–h reacted with N,N-dimethylformamide
dimethyl acetal (DMFDMA) at 90 �C for 24 h to pro-
vide the corresponding 2-aryloxy-3-dimethylamino-
propenoates 4a–h (Table 1).14;15 The yields were not
significantly modified by the position of the substituents
in the benzene ring. In all cases, the propenoates were
obtained as a single stereoisomer, as shown by NMR
analysis of the crude mixture. The Z configuration of the
double bond was established by NOE experiments,
which showed an enhancement of the signal of the
aromatic protons when the signal attributed to the
dimethylamino protons was irradiated. This effect was
not observed by irradiation of the vinylic proton. The
preference for the configuration of the Z stereoisomer
parallels that observed in the preparation of olefins 5,10

and analogous compounds.16 This is probably due to the
higher stability gained by the planar p-conjugated
acrylate system when the bulky dimethylamino group is
located at the opposite side of the double bond.10

The phenoxyacetic methyl esters 9a–h were prepared by
a two-step procedure, starting from the corresponding
phenols 8a–h. Thus, by treatment of these phenols with
the sodium salt of chloroacetic acid in aqueous NaOH,
and heating to 60 �C for 8 h, the phenoxyacetic acids
were prepared in good yields (75–82%).17 Esterification
of the latter in the presence of methanol and p-TsOH
furnished the methyl esters 9a–h in high yields (80–
95%).18

Compounds 4a–d and 4g were heated in acetonitrile
(100 �C) for 24 h in order to promote the cyclization to
the heterocycle. While derivatives 4b, d, and 4g bearing
Scheme 1.

Scheme 2.
benzene rings activated with electron-donating groups
such as methoxy or alkoxy substituents, provided the
corresponding benzofurans 7a–b (Table 2, entries 1–3),
aminopropenoates 4a, and 4c failed to undergo cycli-
zation to the heterocycle. In these cases, the starting
material was recovered unchanged.

We also investigated the one-step tandem reaction
leading to the benzofurans 7a–c from the phenoxyacetic
methyl esters 9b, 9d, and 9g (Table 2). Thus, when the
latter were treated with DMFDMA (2mol equiv) in
acetonitrile at 100 �C for 48 h, the desired benzofurans
were obtained (Table 2, entries 4–6). The yields were
slightly lower than the overall yields for the two steps
starting from the dimethylaminopropenoates 4.

Mechanistically, the cyclization reaction might proceed
via a nucleophilic Michael addition of the substituted
benzene ring to the dimethylaminopropenoate moiety,
followed by aromatization through elimination of the
dimethylamino group. Therefore, the cyclization process
could be facilitated by complexation of the carbonyl
with a Lewis acid, like a typical Friedel–Crafts alkyl-
ation.19 Consequently, we also investigated the effect of
a Lewis acid on the chemical yield for the transforma-
tion of compounds 4 to benzofurans 7 (Table 2). Cata-
lysts such as AlCl3 and BF3ÆOEt2 were unable to carry
out the reaction, giving either recovered starting mate-
rials or a complex mixture of products. However, zinc
chloride was efficient in providing the desired benzo-
furans 7a–f in moderate to good yields (Table 2, entries
7–12).20

In summary, we have described a novel synthesis of
benzofurans via intramolecular cyclization of the
captodative alkenes 4. It was established that this reac-
tion needs that the benzene ring be substituted by elec-



Table 2. Preparation of benzofurans 7a–f by cyclization of 3-dimethylaminopropenoates 4, or by reaction of phenoxyacetates 9 with DMFDMAa

Entry Substrate Solvent Reagent Temperature (�C) Time (h) Product Yield (%)b

1 4b (3-OMe) CH3CN –– 100 24 7a 40

2 4d (3,4-(OMe)2) CH3CN –– 100 24 7b 42

3 4g (3,4-OCH2O) CH3CN –– 100 24 7c 45

4 9b (3-OMe) CH3CN DMFDMA 100 48 7a 20

5 9d (3,4-(OMe)2) CH3CN DMFDMA 100 48 7b 22

6 9g (3,4-OCH2O) CH3CN DMFDMA 100 48 7c 25

7 4b (3-OMe) CH2Cl2 ZnCl2 20 72 7a 62

8 4d (3,4-(OMe)2) CH2Cl2 ZnCl2 20 72 7b 68

9 4e (3-OMe,4-OEt) CH2Cl2 ZnCl2 20 72 7c 65

10 4f (3-OMe,4-OBn) CH2Cl2 ZnCl2 20 72 7d 70

11 4g ((3,4-OCH2O) CH2Cl2 ZnCl2 20 72 7e 68

12 4h (2,3,4-(OMe)3) CH2Cl2 ZnCl2 20 72 7f 72

aUnder N2 atmosphere, with 2.0mol equiv of DMFDMA or 3.0mol equiv of ZnCl2.
bAfter column chromatography and recrystallization.
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tron-releasing groups. A shorter pathway to attain the
desired heterocycles was also reported by a tandem
thermal condensation–cyclization process between the
phenoxyacetates 9 and DMFDMA. Application of this
methodology to the synthesis of natural occurring benzo-
furans is currently in progress.
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